Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Pers Med ; 11(6)2021 Jun 03.
Article in English | MEDLINE | ID: covidwho-1259528

ABSTRACT

Pulmonary parenchymal and vascular damage are frequently reported in COVID-19 patients and can be assessed with unenhanced chest computed tomography (CT), widely used as a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we aimed to build a predictive model of in-hospital mortality using univariate analysis (Mann-Whitney U test) and machine learning models (support vectors machines (SVM) and multilayer perceptrons (MLP)). Patients with RT-PCR-confirmed SARS-CoV-2 infection and unenhanced chest CT performed on emergency department admission were included after retrieving their outcome (discharge or death), with an 85/15% training/test dataset split. Out of 897 patients, the 229 (26%) patients who died during hospitalization had higher median pulmonary artery diameter (29.0 mm) than patients who survived (27.0 mm, p < 0.001) and higher median ascending aortic diameter (36.6 mm versus 34.0 mm, p < 0.001). SVM and MLP best models considered the same ten input features, yielding a 0.747 (precision 0.522, recall 0.800) and 0.844 (precision 0.680, recall 0.567) area under the curve, respectively. In this model integrating clinical and radiological data, pulmonary artery diameter was the third most important predictor after age and parenchymal involvement extent, contributing to reliable in-hospital mortality prediction, highlighting the value of vascular metrics in improving patient stratification.

2.
Radiology ; 300(2): E328-E336, 2021 08.
Article in English | MEDLINE | ID: covidwho-1136121

ABSTRACT

Background Lower muscle mass is a known predictor of unfavorable outcomes, but its prognostic impact on patients with COVID-19 is unknown. Purpose To investigate the contribution of CT-derived muscle status in predicting clinical outcomes in patients with COVID-19. Materials and Methods Clinical or laboratory data and outcomes (intensive care unit [ICU] admission and death) were retrospectively retrieved for patients with reverse transcriptase polymerase chain reaction-confirmed SARS-CoV-2 infection, who underwent chest CT on admission in four hospitals in Northern Italy from February 21 to April 30, 2020. The extent and type of pulmonary involvement, mediastinal lymphadenopathy, and pleural effusion were assessed. Cross-sectional areas and attenuation by paravertebral muscles were measured on axial CT images at the T5 and T12 vertebral level. Multivariable linear and binary logistic regression, including calculation of odds ratios (ORs) with 95% CIs, were used to build four models to predict ICU admission and death, which were tested and compared by using receiver operating characteristic curve analysis. Results A total of 552 patients (364 men and 188 women; median age, 65 years [interquartile range, 54-75 years]) were included. In a CT-based model, lower-than-median T5 paravertebral muscle areas showed the highest ORs for ICU admission (OR, 4.8; 95% CI: 2.7, 8.5; P < .001) and death (OR, 2.3; 95% CI: 1.0, 2.9; P = .03). When clinical variables were included in the model, lower-than-median T5 paravertebral muscle areas still showed the highest ORs for both ICU admission (OR, 4.3; 95%: CI: 2.5, 7.7; P < .001) and death (OR, 2.3; 95% CI: 1.3, 3.7; P = .001). At receiver operating characteristic analysis, the CT-based model and the model including clinical variables showed the same area under the receiver operating characteristic curve (AUC) for ICU admission prediction (AUC, 0.83; P = .38) and were not different in terms of predicting death (AUC, 0.86 vs AUC, 0.87, respectively; P = .28). Conclusion In hospitalized patients with COVID-19, lower muscle mass on CT images was independently associated with intensive care unit admission and in-hospital mortality. © RSNA, 2021 Online supplemental material is available for this article.


Subject(s)
COVID-19/complications , Radiography, Thoracic/methods , Sarcopenia/complications , Sarcopenia/diagnostic imaging , Tomography, X-Ray Computed/methods , Aged , Female , Humans , Italy , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Predictive Value of Tests , Retrospective Studies , SARS-CoV-2
4.
Br J Radiol ; 93(1113): 20200407, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-690855

ABSTRACT

OBJECTIVES: To present a single-centre experience on CT pulmonary angiography (CTPA) for the assessment of hospitalised COVID-19 patients with moderate-to-high risk of pulmonary thromboembolism (PTE). METHODS: We analysed consecutive COVID-19 patients (RT-PCR confirmed) undergoing CTPA in March 2020 for PTE clinical suspicion. Clinical data were retrieved. Two experienced radiologists reviewed CTPAs to assess pulmonary parenchyma and vascular findings. RESULTS: Among 34 patients who underwent CTPA, 26 had PTE (76%, 20 males, median age 61 years, interquartile range 54-70), 20/26 (77%) with comorbidities (mainly hypertension, 44%), and 8 (31%) subsequently dying. Eight PTE patients were under thromboprophylaxis with low-molecular-weight heparin, four PTE patients had lower-limbs deep vein thrombosis at ultrasound examination (performed in 33/34 patients). Bilateral PTE characterised 19/26 cases, with main branches involved in 10/26 cases. Twelve patients had a parenchymal involvement >75%, the predominant pneumonia pattern being consolidation in 10/26 patients, ground glass opacities in 9/26, crazy paving in 5/26, and both ground glass opacities and consolidation in 2/26. CONCLUSION: COVID-19 patients are prone to PTE. ADVANCES IN KNOWLEDGE: PTE, potentially attributable to an underlying thrombophilic status, may be more frequent than expected in COVID-19 patients. Extension of prophylaxis and adaptation of diagnostic criteria should be considered.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Inpatients/statistics & numerical data , Pneumonia, Viral/epidemiology , Pulmonary Embolism/epidemiology , Aged , COVID-19 , Comorbidity , Computed Tomography Angiography/methods , Female , Hospitalization , Humans , Italy/epidemiology , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Retrospective Studies , Risk , SARS-CoV-2
5.
Quant Imaging Med Surg ; 10(6): 1325-1333, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-604095

ABSTRACT

To assess pulmonary vascular metrics on chest CT of COVID-19 patients, and their correlation with pneumonia extent (PnE) and outcome, we analyzed COVID-19 patients with an available previous chest CT, excluding those performed for cardiovascular disease. From February 21 to March 21, 2020, of 672 suspected COVID-19 patients from two centers who underwent CT, 45 RT-PCR-positives (28 males, median age 75, IQR 66-81 years) with previous CTs performed a median 36 months before (IQR 12-72 months) were included. We assessed PnE, pulmonary artery (PA) diameter, ascending aorta (Ao) diameter, and PA/Ao ratio. Most common presentations were fever and dyspnea (15/45) and fever alone (13/45). Outcome was available for 41/45 patients, 15/41 dead and 26/41 discharged. Ground-glass opacities (GGOs) alone were found in 29/45 patients, GGOs with consolidations in 15/45, consolidations alone in 1/45. All but one patient had bilateral pneumonia, 9/45 minimal, 22/45 mild, 9/45 moderate, and 5/45 severe PnE. PA diameter (median 31 mm, IQR 28-33 mm) was larger than before (26 mm, IQR 25-29 mm) (P<0.001), PA/Ao ratio (median 0.83, IQR 0.76-0.92) was higher than before (0.76, IQR 0.72-0.82) (P<0.001). Patients with adverse outcome (death) had higher PA diameter (P=0.001), compared to discharged ones. Only weak correlations were found between ΔPA or ΔPA/Ao and PnE (ρ≤0.453, P≤0.032), with 4/45 cases with moderate-severe PnE and minimal increase in PA metrics. In conclusion, enlarged PA diameter was associated to death in COVID-19 patients, a finding deserving further investigation as a potential driver of therapy decision-making.

SELECTION OF CITATIONS
SEARCH DETAIL